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CHAPTER I. GENERAL INTRODUCTION 

Dramatic, usually cyclic, changes in vegetation dynamics in prairie pothole wetlands due to water 

level fluctuations and other environmental factors are well recognized (van der Valk and Davis 1976, van der 

Valk 1981, Kantrud et al. 1989). Yet, relatively little work has been done on the effects of wedand vegetation 

on the physical environment of the bulk water phase and subsequent effects on microbial metabolism (in prairie 

pothole or other wetlands). 

The relationship between depressed concentrations of dissolved Ot and the presence of submerged and 

floating-leafed vegetation has been noted in many studies (Buscemi 1958, Lewis and Bender 1961, Carpenter 

and Gasith 1978, Duffield 1981, Pokomy and Rejmankova 1983, Ondok et al. 1984, Bican et al. 1986, 

Carpenter and Lodge 1986, Frodge et al. 1990). Few studies have found low dissolved O, associated with 

emergent macrophyte stands (Carter and Beadle 1932; Ulehlova and Pribil 1978, Reddy 1981, Suthers and Gee 

1986, Murkin et al. 1992, Hamilton, et al. 1995). Some of these studies have emphasized the importance of 

dissolved O, patterns in wetlands to the distribution of invertebrates and fish and the resulting effects on 

predator-prey dynamics (Suthers and Gee 1986, Murkin et al. 1992) while other studies have focused primarily 

on moderately exposed margins of emergent beds and generally demonstrated periodic depression of dissolved 

O2 primarily at night (Ulehlova and Pribil 1978, Reddy 1981). None of these studies have reported long 

periods of anoxia within the water column of wetlands. Submerged, floating-leafed, and emergent plants may 

affect basic physical parameters such as light, temperature and dissolved O, concentrations in the water column 

directly through their photosynthesis and respiration, and indirectly by shading the water column, contributing 

organic matter and substratiun for periphytic algae and bacteria, and by interfering with gas transfer across the 

air/water interface. But emergent plant communities generally have higher productivity and are more persistent 

than submerged plants (Godshalk and Wetzel 1978, Wetzel 1983) and therefore could have a greater effect on 

these physical processes. 

Both aerobic (photosynthesis and respiration) and anaerobic metabolism may be affected by the 

physical effects of persistent plant structure. In freshwater systems, under anaerobic conditions, 

methanogenesis is usually the most important carbon metabolic process (Capone and Kiene 1988). Despite the 

potential importance of these processes, rates of methanogenesis or methane flux have not been reported in 

prairie pothole wetlands. Since biogeochemical cycles and possibly contaminant fates with links to carbon 

metabolism may also be affected, more information is needed on these physical effects, in part, to make better 

decisions about the management of wetlands and to understand their role in the landscape. The papers in this 

dissertation examine the temporal and spatial patterns of temperature, dissolved O2, aquatic aerobic 

metabolism, and methanogenesis in prairie pothole wetland systems dominated by Typha spp. using both a 

natural marsh and experimental wetland mesocosms. 



www.manaraa.com

Dissertation Organization 

This dissertation consists of two manuscripts written for journals, describing the effects of emergent 

aquatic plants on the dissolved oxygen, temperature, and carbon metabolic dynamics of the water column in 

prairie pothole wetland systems. 

The first paper will be published in the journal Wetlands in December 1996. Charles Rose is the 

principle author and William G. Crumpton is the co-author. This paper describes how synoptic surveys, 

monitoring of different wetland zones with microprocessor-based continuous temperature and dissolved O2 

probes, and detailed transect studies were used to describe the dynamics of dissolved Oi in a large prairie 

pothole marsh. 

The second paper is written for submission to the journal Limnology and Oceanography. Charles 

Rose will be the first author; William G. Crumpton will be the second author. This paper describes 

measurements of dissolved Oi, temperature dynamics, aerobic carbon metabolism, and CH4 flux in a natural 

prairie pothole wetland and some experiments using wetland mesocosms. 

A General Summary follows the two papers; references cited in the General Introduction and General 

Summary are listed following the General Summary. 
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CHAPTER 2. EFFECTS OF EMERGENT MACROPHYTES ON DISSOLVED OXYGEN 

DYNAMICS IN A PRAIRIE POTHOLE WETLAND 

A paper accepted by the the journal Wetlands 

Charles Rose, WiUiam G. Crumpton 

ABSTRACT 

Transect measurements, continuous monitoring, and synoptic surveys were used to examine patterns in 

light availability, temperature, and dissolved oxygen concentrations within and outside emergent vegetation zones 

in Goose Lake Marsh, a natural prairie pothole wetland in central Iowa. Water column light availability was less 

than 2% of ambient light in emergent vegetated areas due to canopy cover, small floating plants (lemnids), and 

plant litter. Water temperatures and dissolved oxygen concentrations were significantly lower and varied less 

diumally in vegetated areas. Three habitat zones could be identified based on patterns in vegetation and dissolved 

oxygen: (1) a zone of dense emergent macrophytes providing significant submerged structure but with nearly or 

completely anoxic water, (2) a transition zone of sparse emergent macrophytes providing less structure but with 

more aerobic water, and (3) an open water zone with consistently aerobic water but with little submerged 

structure. Vegetation patterns are likely to control major aspects of wetland biogeochemistry and trophic 

dynamics, and wetlands should be viewed as complex mosaics of habitats with distinct structural and functional 

characteristics. 

Key Words: prairie pothole marsh, wetlands, dissolved oxygen, aerobic, anaerobic, emergent macrophyte, litter 

accumulation, nutrient cycling, biogeochemistry 

INTRODUCTION 

Seasonal and long-term changes in vegetation structure are a common characteristic of most wetland 

ecosystems. The vegetation dynamics of prairie pothole wedands have been the subject of considerable research 

in recent years, and it is now recognized that these wetlands undergo dramatic, sometimes cyclic changes in 

response to water-level fluctuations and other environmental factors (van der Valk and Davis 1976, van der Valk 

1981, Kantrud et al. 1989). However, there has been comparatively little work on the response of environmental 

factors to changes in wetland vegetation. 

Aquatic vegetation can significantly affect the physical and chemical characteristics of sediments and 

overlying waters, including such critical factors as temperature and availability of dissolved oxygen. Aquatic 

macrophytes transfer oxygen to the rhizosphere, with important biogeochemical consequences for energy flow 
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and nutrient cycling (Carpenter and Lodge 1986, Reddy et al. 1989), and they can significantly alter oxygen 

availability in the water column (Reddy 1981, Carpenter and Lodge 1986, Frodge et al. 1990). The concentration 

of oxygen in equilibrium with a body of water in contact with the atmosphere varies primarily with temperature 

(Mortimer 1981). However, nonequilibrium concentrations are typical of wetlands as a result of atmospheric 

exchange rate and metabolic Oi consumption and production. Aquatic vegetation can alter dissolved oxygen 

(D.O.) djmamics in the water column directly by reducing gas exchange at the water's surface, by root respiration, 

indirectly by reducing light available for photosynthesis, by providing a substratum for periphytic algae, and by 

providing a carbon source and substratum for microbial respiration. 

Most studies of aquatic vegetation and D.O. relationships have dealt with effects of submersed and 

floating-leafed vegetation (Buscemi 1958, Carpenter and Gasith 1978, DufReld 1981, Pokomy and Rejmankova 

1983, Ondok et al. 1984, Bican et al. 1986, Carpenter and Lodge 1986, Frodge et al. 1990). There have been far 

fewer studies of D.O. dynamics in emergent macrophyte stands, and these have focused primarily on moderately 

exposed margins of emergent beds (Ulehlova and Pribil 1978, Reddy 1981, Suthers and Gee 1986, Murkin et al. 

1992). In general, results demonstrate periodic depression of D.O., primarily at night, but not prolonged periods 

of anoxia. However, anoxia might be much more persistent deep within emergent macrophyte stands where 

vegetation and litter densities are high. The primary objective of this study was to examine the spatial and 

temporal dynamics of water-column D.O. in relation to the distribution of emergent vegetation in a natural prairie 

pothole wetland, including interior zone.s of living and dead emergent stands. 

METHODS 

Study Site 

Goose Lake Marsh (also known as Anderson Lake) is a natural prairie pothole wetland that has been the 

subject of a variety of research efforts over the past century (Pammel 1898, Errington 1963, Weller and Spatcher 

1965, Davis and van der Valk 1978a,b, Roosa 1981). The wetland is located northeast of Jewell, Iowa (42° 22' 

north latitude, 93° 30' west longitude), near the southern end of the prairie pothole region (van der Valk 1989). 

The marsh's surface area is about 65 ha, and its maximum depth is near 1.5 m. Water depth is regulated by a dam 

at the southwestern outlet Goose Lake Marsh has been classified as a hard water, semi-permanent wetland 

(Davis and van der Valk 1978a). It has a small watershed (Weller and Spatcher 1965), much of which is 

agricultural (mainly com and soybean production). A base map of the marsh was constructed by digitizing the 

image fi-om an aerial 35-mm slide in September 1993. We used about 325 depth measurements recorded from a 

canoe to create depth isopleths (Figure 1). Interpolations were made with a Kriging method using Surfer 

software (Golden Software, Inc., Golden, Colorado, USA). Sampling locations were determined by triangulation 

of compass bearings. 
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Continuous Data Collection 

Continuous water quality monitors (AQUA 2000 prototypes, Biodevices Inc., Ames, Iowa, USA) 

recorded temperature and D.O. at five locations (Figure I) in the marsh during the ice-free period in 1994. Sites I 

and 2 were within a mixed cattail stand dominated by Typha x glauca Godr. with occasional Typha angustifolia 

L. Site 3 was at the edge of the Typha spp. stand. Site 4 was open water early in the year but developed into a 

stand of Scirpus jlicviatilis (Torr.) Gray during the middle of the growing season. We refer to this as the 

fluctuating vegetation site. Site 5 was open water throughout the study. Sites I and 4 were monitored from late 

March through November, sites 2 and 3 were monitored from May through October, and site 5 from July through 

September. All monitors recorded temperature and D.O. at l5-cm depth every 6 minutes. Prior to deployment, 

temperature sensors were calibrated using a two-point calibration between 4° C and 35° C. The D.O. sensors 

were calibrated using air-saturated water and an Oi saturation value calculated using the formula of Mortimer 

(1981). At approximately two-week intervals, monitors were serviced and D.O. and temperature reference values 

were collected using a field portable meter to check for sensor drift. Sensors drifted less than < 5% and correction 

was not necessary. 

Transects 

On six dates from 3 June to 27 September 1994, water, plant, and microenvironment samples were taken 

near mid-day at three sites along each of four transects from a nearshore, vegetated area to an open water area. 

Different transects were sampled on each date. On each transect, the first site was 2 to 5 meters into an emergent 

stand, the second site was within 3 meters of the emergent-open water boundary (stand margin), and the third site 

was in open water. Vegetation type was recorded, and integrated composites from the water column at each site 

were collected. Unfiltered and 0.45-nm filtered aliquots were preserved for nutrient determination. Nitrate was 

assayed using second derivative spectroscopy (Crumpton et al. 1992), ammonium was assayed using the 

indophenol method (Scheiner 1976), and soluble reactive phosphorus was assayed using the ascorbic acid method 

(APHA 1989). Following persulfate digestion, total nitrogen was assayed using second derivative spectroscopy 

(Crumpton et al. 1992), and total phosphorus was assayed using the ascorbic acid method (APHA 1989). For 

particulate organic carbon (POC) and particulate organic nitrogen (PON), water samples were filtered through 26-

Hm Nitex filters and GF/F filters. Particles were washed off the 26-\im filters onto GF/F filters. POC and PON 

were determined by high temperature combustion and thermal conductivity detection using a Carlo-Erba NA1500 

elemental analyzer. Floating plant samples were collected by inserting a 15-cm-diameter acrylic cylinder into the 

water, covering the bottom of the cylinder below the mixture of small floating plants (lemnids), then transferring 

the contents to a plastic bag. In the laboratory, the plants were freeze-dried and weighed. D.O. and temperature 

data were measured in situ using a field portable meter. Light levels within the water column were recorded at 

each location using an underwater quantum sensor (model LI-192S, LI-COR, inc., Lincoln, Nebraska, USA). On 

five dates (excluding June 3), samples to determine dissolved methane were collected; 5-10 mL of water were 
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drawn into a lO-ml syringe with a I8-gauge needle, then injected into an evacuated, 20-mL gas chromatography 

(GC) vial through a butyl-rubber septum. The procedure took place under water to prevent air contamination. 

Methane standard and sample concentrations were measured on a Tremetrics 540 gas chromatograph (helium 

carrier) configured for head space sampling, a 3.05-m x 3.18-mm stainless steel Haysep D column (at 80 °C), and 

a Tremetrics 706 discharge ionization detector. Methane concentrations in the vial were corrected for gas 

partitioning between the head space and water (Stumm and Morgan 1981). These data were analyzed fay 

ANOVA (with contrasts among date and area compared by LSD). On several dates in August, detailed D.O. 

transects were run across the transition zone between emergent and open water zones with D.O. and temperature 

measurements at 0.5 m horizontal and 0.1 m vertical intervals. These were plotted using the Kriging method with 

Surfer. 

Synoptic Surveys 

The distributions of D.O. and living and dead emergent vegetation in Goose Lake Marsh were surveyed 

at 160 to 200 locations each month from May through October 1994. At each location, daytime oxygen 

concentrations were measured at a depth of 15 cm using the portable field meter, and the dominant vegetation 

types (nearly always Typha spp.) were recorded. Sampling locations were sited on the base map by triangulation 

of compass bearings in order to map D.O. and plant cover. Oxygen isopleths were mapped using the Kriging 

method. 

During September and October 1994, litter samples were collected at 37 sites by inserting a 60-cm-high, 

37.5-cm-diameter (0.1 m") cylinder into the water column and removing all dead plant material above the 

sediment (including aerial parts), cutting the litter at the edge of the cylinder where necessary. Water depths were 

recorded at each site so that litter densities could be calculated on both areal (kg/m") and volumetric (kg/m') 

bases. Litter samples were placed in plastic bags, transported back to the lab, oven-dried at 65° C to a constant 

mass in paper bags, and weighed. 

RESULTS 

There were striking differences in plant material and water column characteristics of open water and 

emergent stands, with stand margins that were intermediate in character (Table 1). Oflen associated with the emergent 

vegetation was a thick growth of small floating plants (lemnids) including Lemna minor L., Spirodela polyrhiza L. 

Schleiden, Lemna trisulca L., Riccia fluitans L. and Wolffia columbiana Karst. Greater amounts of litter and lemnid 

biomass were found in the emergent zone. Edge-of-stand sites were more subject to intrusion of wind-blown water 

from open water areas and to variable cover by floating plants and debris, which were irregularly redistributed by 

wind and wave action. 

Emergent macrophyte stands had lower light levels, higher nutrient levels, higher dissolved methane 
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levels, and higher particulate organic matter than open water areas (Table I). The C:N ratio of particulates did 

not differ among zones but were different (at p < 0.05) and were of 9.6 ± 1.9 and 8.4 ± 2.5 (mean ± S.D.) for the 

large and small size fractions, respectively. Temperatures were generally lower and displayed less diurnal 

variation at sites within the emergent stand than at stand margin and open water sites. In late August, for 

example, water temperature at within-stand sites varied 3-4 "C around a mean of about 20 °C, whereas the 

temperature at open water and edge-of-stand sites varied 8-10 "C around a mean of about 25 °C (Figure 2). Sites 

within the emergent stand had extremely low oxygen concentrations and were ahnost continuously anoxic (Figure 

2), while sites at the edge of the stand had higher dissolved oxygen concentrations, with significant daytime 

increases in D.O. on about half of the days. The open water site maintained consistently higher dissolved o.xygen 

concentrations and had diurnal changes in D.O. of up to 10 mg/L. 

Temperature and D.O. differences between open water and emergent macrophyte zones persisted 

throughout the study. Although the sites displayed similar seasonal temperature patterns, temperatures 

throughout the ice-free season were lower and varied less diumally at emergent stand sites than open water sites. 

Emergent sites were generally anoxic until the marsh began to freeze in November, whereas open water sites were 

rarely anoxic, even at night. The emergent and fluctuating vegetation sites with the longest continuous records 

are illustrated in Figure 3. The fluctuating vegetation site began as open water, but S. fluviatilis emerged near and 

around this site by June. From that time until the disappearance of S. fluviatilis in October, the site displayed a 

mixture of oxygen and temperature dynamics characteristic of stand and stand edge sites. In July, for example, 

when the S. fluviatilis stand reached its maximum development, the site displayed the depressed D.O. and lower, 

less diumally variable temperatures characteristic of stand interiors. 

The D.O. transects demonstrated sharp transitions between open water and emergent zones (Figure 4). 

High dissolved oxygen concentrations were associated with the open water zones, and at sites even a few meters 

into the emergent zones, surface D.O. concentrations were usually < 2 mg/L, declining to less than 0.2 mg/L in 

the lower half of the water column. At one sampling area on 15 August 1994, D.O. was 0.9 mg/L in a Typha spp. 

stand and 11.4 mg/L just 2 m toward the open water (both measurements at 10 cm below the water surface). 

Temperature and oxygen data frequently demonstrated stratification of the water column in the emergent stands. 

Open water areas near the stand margins tended to show oxygen stratification (Figure 4), but except in very calm 

periods, tended to be well-mixed further from stand margins. 

The quantity and distribution of lemnids varied greatly depending on wind speed and direction, but 

lenmids were found in only two open water samples, and their mean dry mass for open water sites was 0.5 g/m" 

(Table 1). In contrast, floating plant dry mass averaged 139 g/m" at sites on stand margins and 316 g/m" at sites 

within the stands. The combination of Typha spp. plants, litter, and floating plants usually resulted in less than 

2% ambient light at 5 cm below the water surface, even in sparse canopies or dead emergent zones. Within stands 

of both living and dead emergent plants, water-column anoxia persisted regardless of the presence or density of 
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floating plants. Anoxic conditions also persisted in the absence of floating plants early and late in the growing 

season (Figure 3). 

Synoptic surveys confirmed that low dissolved oxygen concentrations were consistently associated with 

the emergent macrophyte zone around the margins of the marsh and islands (Figure 5). In May, this zone 

consisted primarily of standing dead shoots and fallen litter rather than live plants and covered about 45% of the 

marsh's surface area. Live vegetation was first recorded in June and emerged primarily within zones of standing 

dead shoots. Coverage by live emergent vegetation increased to a peak of 19% of the wetland area by July, after 

which coverage by live vegetation slowly decreased. The open water area had scattered patches of submersed 

plants (primarily Potamogeton spp.) and water lilies {Nuphar microphyllum (Pers.) Femald. and Nymphaea 

tuberosa Paine). During the growing season, there was a slight increase in the open water area of the marsh from 

about 55 % in May to 61 % in October. From May to July, the < 2.0 mg O2 /L area in the southeast margin 

expanded (probably due to increasing temperatures). Higher D.O. retiuned to those areas by October. Some 

areas dominated by standing dead vegetation changed to open water between July and October at locations 

around the islands and along the south and southeast margins. D.O. generally increased in those areas 

concomitant with the conversion to open water. 

DISCUSSION 

At least three major habitat zones could be identified in Goose Lake Marsh based on patterns in 

vegetation and physical parameters: (1) a zone of dense emergent macrophytes providing significant submerged 

structure and with nearly or completely anoxic water, (2) a transition zone of sparse emergent macrophytes 

providing less structure but with more aerobic water, and (3) an open water zone with little or no structure and 

with consistently aerobic water. These zones can be expected to differ greatly with regard to biogeochemical 

dynamics, biota, and trophic dynamics. For example, areas with low-to-intermediate oxygen levels might be 

especially important as a refuge for invertebrates adapted to low oxygen conditions (Murkin et al. 1992). These 

zones may represent a few of this wetland's complex mosaics of habitats. 

Much of the difference in dissolved oxygen and temperature patterns between the vegetated and open 

water zones (Figures 2, 3,4, and 5) can be attributed to the physical effects of vegetation on Oi supply. 

Compared to the open water zone, the emergent zone would have lower rates of Ot supply because of reduced 

photosynthesis and reduced O, flux from the atmosphere. In emergent stands, much of the ambient light is 

intercepted by the emergent canopy, lemnids, or plant litter, thereby reducing temperature and photosynthetic 

production of O, in the water column. 

Gas exchange between the atmosphere and surface water is controlled primarily by the gas concentration 

gradient and the boundary layer thickness (Liss and Slater 1974, Broecker and Peng 1982). The boundary layer 

thickness controls the maximum rate of gas exchange and is primarily a function of shear forces across the air-
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water interface. Shear forces and gas transfer rates are decreased by factors that decrease wind velocity (such as a 

dense plant canopy) or decrease mixing of the water column (such as dense accumulations of living or dead 

macrophyte shoots and leaves within the water column. These factors can be expected to influence oxygen and 

methane transfer differentially in live emergent and dead emergent zones. Reduction of light and wind velocity 

by the plant canopy would obviously be most important in the live emergent zone. Reduction of light and water-

column mixing due to submerged structure would be important in both live and dead emergent zones. Floating 

plants block light and inhibit oxygen transfer by blocking the air-water interface (Morris and Barker 1977) and 

can contribute to low oxygen concentrations in both emergent and open water zones as may be the case in Figure 

4(b). 

In addition to lower rates of Oi supply from the atmosphere, the emergent zone would likely have higher 

rates of O2 demand because of the tremendous annual contribution of the emergent macrophytes to detritus. Litter 

densities in the emergent vegetation zone were approximately an order of magnitude greater than in the open 

water zone and presumably represented several years of accumulation. Davis and van der Valk (1978b) reported 

about 1.3 kg m"" year"' of above-ground production of Typha x glauca in Goose Lake Marsh with about 0.95 

kg/m^ remaining after 525 days. The elevated methane concentrations in the emergent zone are comparable to 

those previously reported for Typha sp.-dominated wetlands in agricultural areas (Schipper and Reddy 1994) and 

may reflect both greater anaerobic production rates and lower air-water flux coefficients in dense emergent 

stands. 

Many of the effects of emergent macrophytes on their environment are similar to those of submersed 

macrophytes (Carpenter and Lodge 1986). However, we found much more extreme and persistent oxygen 

depression in emergent stands (Figures 2, 3,4, and 5) than has been reported for beds of submersed and floating 

leafed macrophytes. This can largely be attributed to restriction of most photosynthesis to the emergent leaves, as 

well as to the greater amount and persistence of plant structure in emergent stands. Emergent plant communities 

have higher potential production rates than submerged communities (Wetzel 1983). Emergent macrophytes 

produce much more structural material (lignin, cellulose, and hemicellulose) than do submersed and floating 

leafed plants, and this material decomposes relatively slowly (Godshalk and Wetzel 1978). As was clearly the 

case in Goose Lake Marsh (Figure 5), standing dead shoots and fallen litter can limit oxygen availability years 

after the dieback of emergent plants such as Typha spp. Effective aeration of the water column seems to require 

removal of dead as well as live vegetation, for example by muskrats or by physical erosion due to wind and 

waves, as was observed in the southeastern section of Goose Lake Marsh after July 1994 (Figure 5). These 

considerations are particularly important given the longer-term (5-20 year) vegetation cycles of prairie pothole 

wetlands in response to water-level fluctuations and other environmental factors (Weller and Spatcher 1965, van 

der Valk and Davis 1978, Roosa 1981, Kantrud et al. 1989). These cycles can be quite dramatic, with changes 
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from near 100 % cover by emergent macrophytes to near 100 % open water within just a few years (Weller and 

Spatcher 1965). 

Temporal and spatial patterns of emergent vegetation are likely to control major aspects of wetland 

energy flow, nutrient cycling, and food web structure. Depressed O, concentrations and supply rates would limit 

aerobic metabolism in emergent zones and could increase the relative importance of energy flow through 

anaerobic pathways such as denitrification, sulfate reduction, and methanogenesis. In addition, juxtaposition of 

aerobic and anaerobic zones in the rhizosphere or between the bulk water phase and biofilms in wetlands is 

thought to provide tight coupling of various aerobic and anaerobic reactions such as nitrification-denitrification 

and methanogenesis-methane oxidation. However, in anoxic emergent stands, the potential for coupling of 

aerobic and anaerobic reactions would be virtually eliminated from the bulk water phase and restricted to the 

rhizosphere. Either directly or indirectly, vegetation dynamics are likely to control many of the complex 

biogeochemical transformations involved in wetland nutrient cycling and may help explain why a wetland may 

act as a nutrient sink one year and a nutrient source another. Additionally, the interplay between Oj distribution 

and vegetation structure in wetlands is important to the dynamics of aquatic invertebrates and their predators 

(Suthers and Gee 1986, Murkin et al. 1992) and may affect diversity and secondary production. If we are to 

understand fimctional processes in prairie pothole wetlands, we must recognize these wetlands as complex spatial 

and temporal mosaics of habitats with distinct structural and functional characteristics. 
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Table I. Means ± SEM (n) for various parameters in wetland zones in Goose Lake Marsh. Planned comparisons 
indicated differences at p < 0.05 either among all three zones (*) or between the emergent and open water zones 
(**), but indicated no effect of sampling date except for dissolved methane on one date. 

Parameter Emergent Stand Stand Margin Open Water 

Plant Litter* 

(kg/m^) 

(kg/m^) 

Lemnids* g/m^ 

Light* (% Surface 
Irradiation at 5 cm depth) 

Total Nitrogen* (mg/L) 

NH4'"-Nitrogen (ng/L) 

NOj'-Nitrogen (|ig/L) 

Total 
Phosphorus (ng/L) 
Soluble** 
Reactive Phosphorus (ng/L) 
Particulate Carbon* 
> 26 nm (mgTL) 
Particulate Nitrogen* 
> 26 Jim (mgVL) 
Particulate Carbon** 
GF/F (mgVL) 
Particulate Nitrogen 
GF/F (mg/L) 
Dissolved Methane* 
(mg/L) 

2.34 ±0.18 (24) 

5.5 ± 0.5 (24) 

316 + 64(24) 

I.5 ±0.5 (24) 

5.5 ± 0.7 (24) 

450 ± 70 (24) 

Not Detected (24) 

258 ± 28 (23) 

102 ± 14 (24) 

I I .0± L4 (24)  

1.1 ±0.1 (24) 

2.7 ± 0.3 (22) 

0.33 ± 0.04 (22) 

6.6 ± 1.0(19) 

1.19 ±021 (8) 

2.3 ± 0.4 (8) 

139 ±28 (24) 

29 ± 6 (24) 

3.4 ±0.4 (24) 

390 ± 50 (24) 

Not Detected (24) 

280 ± 30 (24) 

88± 13 (24)  

6.8 ± 1.0 (24) 

0.71 ±0.11 (24) 

1.9 ±0.2 (21) 

0.25 ±0.02 (21) 

2.9 ±0.6 (19) 

0.35 ±0.12 (5) 

0.45 ±0.16 (5) 

0.5 ±0.1 (24) 

6I±6(23)  

1.58 ±0.12 (24) 

330 ± 70 (24) 

Not Detected (24) 

200 ±40 (23) 

66 ± 8 (24) 

1.9 ±0.3 (24) 

0.20 ± 0.03 (24) 

1.6 ±0.2 (20) 

0.17 ±0.02 (20) 

0.7 ±0.1 (19) 
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Goose Lake Marsh 
Depth (cm) 

Figure 1. Depth (cm) isopleths of Goose Lake Marsh in central Iowa. The numbers mark locations of 
continuous water quality monitors. 
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Figure 2. Diurnal variations in water column (a) temperature and (b) D.O. within an emergent stand (sites 1-2), 
at the edge of an emergent stand (sites 3-4), and in open water (site 5). D.O. was nearly always below 0.2 
mg/L at sites 1 and 2. 
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Figure 3. Long-term (a) temperature and (b) D.O. changes at site 1 (Typfia spp. stand) and site 4 (fluctuating 

vegetation). Site 4 was in open water through June -> Scirpus fluviatilis stand or stand edge July through 

September —> open water after September. Due to monitor failure, there are no data for site 4 for November. 
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Figure 4. Changes in D.O. isopleths (mg/L) along horizontal gradients from areas of emergent vegetation to 
open water areas during August 1994. Vegetation and litter present at these sites was Typha spp. The 
transects (b) and (c) also had lemnids present among the emergent plants and open water areas. - • 



www.manaraa.com

August September 

Figure 5. Montlily D.O, isoplellis (ing/L) and areas of emergent vegetation in Goose Lake Marsh recorded during 1994, Vertical hatches indicate live 
emergent plants (predominantly Typha spp.), dark grey areas represent dead, emergent macrophytesm and light grey areas indicate open water areas. 
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CHAPTER 3. PATTERNS OF AQUATIC AEROBIC METABOLISM AND 
METHANOGENESIS IN A PRAIRIE POTHOLE WETLAND 

A paper to be submitted to the journal Limnology and Oceanography 

Charles Rose, Wilh'am G. Crumpton 

Abstract 

In a prairie pothole wetland, diurnal oxygen curve analyses were used to determine water column 

photosynthesis and respiration in open water, transitional, and emergent vegetation zones, while CH4 flux due 

to diffusion and ebuiliation was measured at the air/water interface in these zones. Dissolved Oi, temperature, 

light, dissolved CH4, plant densities, and litter densities were measured in transects from open water to 

emergent vegetation zones. Water column temperature, light penetration, photosynthesis, and aerobic 

respiration rates were much greater in open water than in emergent vegetation zones. CH4 concentrations in 

the water column were much lower in open water than in emergent vegetation zones, but CH4 flux rates were 

similar. As a result, methanogenesis is a relatively more important carbon pathway in emergent vegetation 

than in open water zones. A summary of the carbon budget of different zones suggests that the emergent zone 

typically has production in excess of consumption while the open water zone may have greater consumption 

than production. Obviously, organic matter to support the open water zone's consumption is due to production 

during previous years and possibly to imports from the emergent vegetation zone. 

Introduction 

Emergent macrophytes are likely to affect major aspects of carbon metabolism and biogeochemistry 

of wetlands. The transfer of oxygen to the rhizosphere via emergent macrophytes is one example. In addition, 

macrophytes may affect many aspects of the physical and chemical characteristics of the water column 

(Ulehlova and Pribil 1978; Reddy 1981; Bican et al. 1986; Murkin et al. 1992; Hamilton et al. 1995). Aquatic 

plants can increase dissolved O, in the water column directly through photosynthesis and indirectly by 

providing substratum for periphytic algae. They can also decrease dissolved Oi concentrations by shading the 

water column (which reduces photosynthesis and heat transfer), by their own respiration, by contributing 

organic matter and substratum for bacteria, as well as by disrupting gas transfers across the air/water interface. 

In some cases, these alterations of the physical environment reduce dissolved Oj concentrations to anaerobic 

levels (Lewis and Bender 1961; Ulehlova and Pribil 1978; Rose and Crumpton 1996). 
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Previously, we have reported very different dynamics of dissolved O2 and temperature in different 

zones of a prairie pothole wetland (Rose and Crumpton 1996). Open water areas had diurnal 0, changes of up 

to 10 mg L"' while vegetated areas consistently had dissolved O, below 1.0 mg L"'. Temperatures were greater 

and diurnal temperature changes were greater in open water areas compared to vegetated areas. At least three 

habitat zones have been identified in Goose Lake Marsh based on patterns in vegetation and dissolved 

oxygen: (I) an emergent macrophyte zone providing significant submerged structure but with nearly or 

completely anoxic water, (2) a transition zone of sparse emergent macrophytes providing less structure but 

with more aerobic water, and (3) an open water zone with consistently aerobic water but with little submerged 

structure. To further explore the consequences of these dynamics, this smdy used both Typha spp.-dominated 

natural and experimental wetland systems to examine patterns of aquatic aerobic carbon metabolism and 

methanogenesis among areas with different plant structure levels. 

Methods 

Study sites—Goose Lake Marsh is a natural, 65 ha, semi-permanent, prairie pothole wetland located 

in central Iowa (42° 22' north latitude, 93° 30' west longitude) near the southern end of the prairie pothole 

region (van der Valk 1989). A base map of the marsh was constructed by digitizing the image fi-om an aerial 

35 mm slide taken in September, 1993 (Fig. 1). During April, 1995, the marsh's owners lowered the elevation 

of the dam resulting in an approximately 20 cm drop in the water level in an attempt to increase the extent of 

emergent vegetation (personal communications, George Clark, Ames, lA.). However, vegetation and 

dissolved oxygen patterns (measured as in Rose and Crumpton 1996) remained similar to the previous year 

with low dissolved oxygen concentrations associated with stands of emergent vegetation. The open water 

zone had submersed plants (primarily Potamogeton spp.) and water lilies {Nuphar microphyllum (Pers.) 

Femald. and Nymphaea tuberosa Paine). During 1995, most of the live emergent plants were Typha glauca 

with occasional patches of Typha angustifolia\ litter of dead plants in the emergent areas was mainly Typha 

spp. Before July, small floating plants (lemnids) including Lemna minor, Spirodela polyrhiza, Lemna trisulca, 

Riccia jluitans, and Wolffia columbiana were commonly growing on top of the plant litter of these areas (and 

scattered across the open water areas). After July, 1995 other plants started to grow there, rooted in the plant 

litter. This community was dominated by Helianthus sp.. Polygonum sp., and Scirpus validus with plants 

reaching heights of up to 2 m. 

Iowa State University's experimental wetland mesocosm facility is described in Crumpton et al. 

(1993). Briefly, the facility consists of 48 polyethylene tanks, 90 cm deep and 3.35 m in diameter (9 m" 

surface area). About 60 cm of wetland sediment were placed in the tanks, they were planted with Typha 

glauca Godr. rhizomes in 1989 and flooded. Each tank is individually valved, water is supplied through spray 

nozzles around the outer edge. Water levels are controlled by variable height stand pipes located in the center 
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of the tank. By 1994, plant density had reached 60-80 stems/m" (levels typical of field populations) and litter 

density was about 0.7 kg dry mass/m^. 

Field sampling—On six dates from 27 July to 26 August 1995, environmental and water quality 

parameters were measured along transects from near shore, vegetated areas to open water areas using a canoe, 

spearate transects were used on each date (Fig. 1). Transect lengths ranged from 6 to 20 m. Dissolved O^, 

temperature, and light measurements were made at 0.5-1.0 m horizontal and 0.1 m vertical intervals. 

Dissolved O2 and temperature data were measured in situ using a YSI model 51B meter. Light levels within 

the water column were recorded at each location using an underwater quantum sensor (model LI-192S, LI-

COR, Inc., Lincoln, Nebraska, USA). Interpolations were made with a Kriging method. Duplicate lemnid 

(small free-floating plants), plant shoot densities, and plant litter densities were collected at five to nine 

locations along the transects. Lemnid samples were collected by inserting a 15 cm diameter acrylic cylinder 

into the water, covering the bottom of the cylinder below the plants, then transferring the contents to a plastic 

bag. In the laboratory, the plants were freeze dried and weighed. Live and dead shoot densities were 

measured using 0.1 m' quadrats. Litter samples were collected by inserting a 60 cm high, 37.5 cm diameter 

(0.1 m^) cylinder into the water column and removing all dead plant material above the sediment (including 

aerial parts), cutting the litter at the edge of the cylinder where necessary. Water depths were recorded at each 

site so that litter densities could be calculated on both areal (kg m'^) and volumetric (kg m'^) bases. Litter 

samples were placed in plastic bags, transported back to the lab, oven-dried at 65° C to a constant mass in 

paper bags, and weighed. 

Dissolved oxygen and temperature monitoring—During 1995 and 1996, continuous water quality 

monitors (AQUA 2000 prototypes, Biodevices Inc., Ames, Iowa, USA) recorded temperature and dissolved Oj 

at 15 cm depth every 6 minutes at three sites (in emergent vegetation, transitional and open water zones) in the 

marsh (Fig. 1). During part of July and August 1996, additional monitors were placed near the bottom (35-40 

cm depth) of the water column at the open water and emergent vegetation sites. Prior to deployment, 

temperature sensors were calibrated using a two-point calibration between 4 °C and 35 °C. Dissolved O2 

sensors were calibrated using air-saturated water with the Oi saturation value calculated using the formula of 

Mortimer (1981). At approximately two-week intervals, monitors were serviced and dissolved On and 

temperature reference values were collected using a field meter to check for sensor drift, which were < 5% and 

therefore were not corrected. 

Calculation of aquatic aerobic metabolic rates—Diurnal oxygen patterns were analyzed to provide 

estimates of production and respiration (Odom 1956) using the first derivative of the dissolved O, 

concentration based on a moving least-squares convolutes procedure (Savitzky and Golay 1964). Net 

community production (NCP) in g O, m"^ h"' was calculated using the following equation: 

NCP = (dC/d/- D) (1) 
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where dC/d/ was the rate of change in dissolved O, in g O, m"^ h"* and D is the diffusion rate in g O, h"' 

and is estimated as described below. The community respiration (CR) rate was estimated from nighttime 

respiration rates based on the following equation; 

CR = (dC/d/-D) (2) 

where CR is in g O2 m'V. Gross primary production (GPP) was calculated from the following equation: 

GPP = NCP-CR (3) 

which assumes that daytime and nighttime respiration rates are equal. Rates of NCP and CR were converted to 

g C m'^ h"' assuming a photosynthetic quotient of 12 and a respiratory quotient of l.O (Strickland and Parsons 

1972). Areal rates of NCP and CR were calculated from volumetric rates and the depth of each site. 

Estimating rates of photosynthesis, aerobic respiration, and methane flux from water may depend on 

measurements or assumptions about the rate at which or CH4 crosses the air/water interface (Owens 1974). 

The thickness of stagnant boundary layers (SBL) at the air/water interface (along with gas concentrations and 

temperature) controls the diffusion rates of gases into and out of the water column (Liss and Slater 1974; 

Broecker and Peng 1974, 1982). Diffusion of oxygen was estimated as follows; 

D = K.(Q-C)/r (4) 

where Kj is the flux rate constant in m h'', Cs is dissolved Oi at saturation in g O, m'^ (Mortimer 1981), C is 

the mean dissolved O, in g O2 m"' over the 6 minute time period d/ and z is the depth in meters (Owens 1974). 

K, was calculated as follows: 

K, = D/SBL (5) 

where Dt is the temperature-dependent difflisivity of the gas in water is (length' time"') and SBL units are 

length. D, for dissolved O, in water at different temperatures were calculated using the formulas of Broecker 

and Peng (1974). K, values for open water areas are better studied than areas with a matrix of Typha spp. litter 

above, at and below the water surface. Therefore, we concentrated on measuring K, in the emergent 

vegetation. The SBL were measured in the experimental wetland mesocosms using a Clark-style oxygen 

micro electrode with an 80 nm tip (Diamond General Development Corp., Ann Arbor, MI, USA). The 

electrode was lowered into the water with a micromanipulator at 125 nm intervals, and values recorded after 

30 seconds was allowed for readings to stabilize. The boundary layer thickness was from the top of the water 

column to where the dissolved oxygen values were no longer changing (mixed layer). SBL thicknesses in the 

mesocosms were 1700 ± 600 nm. For open water areas of Goose Lake Marsh, a K value of 1.5 cm h"' for O2 

(Owens 1974) was used. In the emergent zone, a mean K value of 0.5 cm h"' was used. For transitional areas, 

the mean of the open water and emergent K values (1.0 cm h"') was used. 

Methane flux—Methane dissolved in the water was measured at each end and at the midpoints of the 

transects; duplicate samples were collected near the top, midpoint, and bottom of the water column at each 

point. From 5-10 mL of water was drawn into a 10-mL syringe with an 18-gauge needle, then injected into an 
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evacuated 20-mL gas chromatography (GC) vial through a butyl-rubber septum with the procedure taking 

place under water to prevent air contamination. Methane concentrations in the vial were corrected for gas 

partitioning between the head space and water (Stumm and Morgan 1981). Methane fluxes from the surface 

were determined near each end and at the midpoint of the transects, duplicate samples for flux due to diffusion 

and to diffusion plus bubbles were collected. Samples to determine flux rates due to diffusion were collected 

by inverting a 20-mL GC vial on the water's surface (Fig. 2). The vials were held by a foam flotation device 

equipped with a wire and aluminum foil shield to prevent collection of bubbles. Flux rates due to diffusion 

and bubbles were collected by inverting a GC vial held by a foam float and inserting a 10 cm fimnel—which 

increased the bubbles collection area (Fig. 2). Bubble fluxes were estimated by difference. These rates were 

scaled by estimating the fraction of free surface where maximum flux could take place since water surface 

cover such as Lemna spp. serves as at least a partial barrier to gas diffusion (Morris and Barker 1977). 

Methane standard (Scott Specialty gases, Wakefield, MA, USA) and sample concentrations were measured on 

a Tremetrics 540 gas chromatograph (helium carrier) configured for head space sampling, a 3.05-m x 3.18-mm 

stainless steel Haysep D column (at 80 °C), and a Tremetrics 706 discharge ionization detector. 

Mesocosm experiments—During September, 1995, plants and litter were physically removed from 

three mesocosms to create experimental units similar to the open water areas of prairie pothole marshes. In 

October 1995, chl-a in mesocosm water samples were analyzed spectrophotometrically (APHA, 1995) and 

analyzed by ANOVA. During 1996, the dissolved Oj and temperature patterns were recorded in the three 

open water and three normal (emergent vegetation) mesocosms using the continuous water quality monitors. 

In October, 1994, effects of plant litter quantity on dissolved O,, temperature, and methane were 

studied using polyethylene cylinders 90-cm tall, 75-cm diameter (0.44-m^); the cylinders were inserted into the 

sediment to a depth of about 15-20-cm to isolate a water column of about 110-L. The following treatments 

were used: (1) normal litter levels remained in the enclosures, (2) half the normal litter level was removed, (3) 

all the litter was removed, and (4) normal litter level was placed in the enclosure after a plastic barrier was 

placed on the bottom of the cylinder to isolate the sediment. One cylinder of each treatment was randomly 

place in three mesocosms resulting in a randomized block design. After a two week period to allow 

disturbance effects to be minimized, water samples to determine methane concentrations were taken as 

described above. Duplicate samples were taken from each enclosure on 24 October, triplicate samples on 26 

October. A K value of 0.25 cm h"' for CH^ was calculated from the measured stagnant boundary layer and the 

diffusivity of CH4 (Broecker and Feng 1974) and was used to model the flux from treatments with litter. A K 

of 1.2 cm h"' for CH4 (temperature adjusted value based on Sebacher et al. (1983) value of 1.7 cm h"' at 20 °C) 

was used for the sediment-only treatment. Daytime temperature and dissolved O2 were taken using a field 

meter. After water sampling, litter was removed, oven-dried at 65° C to a constant mass in paper bags, and 
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weighed. Data were analyzed by ANOVA (with contrasts compared by least significant differences at p < 

0.05). 

Results 

Physical and chemical conditions—In comparison to open water areas, emergent vegetation areas had 

lower light, lower temperatures, lower concentrations of dissolved O,, and higher concentrations of dissolved 

CH4 (Figs. 3-8). Light penetrated deeper into the water column in open water areas, but in the emergent 

macrophyte zone light was blocked by above water plants and litter at or near the top of the water. 

Temperatures were up to 5 "C lower in emergent macrophyte areas than in open water areas. Dissolved O, 

ranged from anoxia in emergent macrophyte areas to supersaturation in open water areas. Methane 

concentrations were greater in emergent macrophyte areas than in open water areas. In most cases, there were 

more dead Typha spp. stalks than living. Lemnid and litter density was higher in emergent macrophyte zones 

than in open water zones. Continuous monitors revealed that temperatures were generally higher and diurnal 

temperature changes were greater at the open water site than at the emergent vegetation site during June and 

throughout the 1995 and 1996 growing seasons. Diurnal changes in dissolved Ot of up to 20 mg L"' were 

recorded at the open water site while anoxic conditions prevailed at the emergent vegetation site (Fig. 9). 

Measurements during July 1996 revealed that temperature and dissolved O, patterns at the bottom of the water 

column were similar to those of the upper emergent site with only the upper part of the water column at the 

open water site having any measurable dissolved Ot (Fig. 10). 

Removing vegetation from mesocosms to simulate open water conditions resulted in diurnal oxygen 

and temperature patterns similar to those found in Goose Lake Marsh (Fig. 11). Open water mesocosms had 

warmer water, higher dissolved Oi, and larger diurnal changes in those parameters than mesocosms with 

emergent vegetation. Algal growth was apparent in the open water mesocosms where phytoplankton chl-a 

concentrations reached up to 362 ± 93 jig/L (mean ± S.D.) compared to 34 ± 11 ng/L in the normal 

mesocosms during October 1995. Oedegonium sp. was the dominant alga at that time. In addition, one of the 

open water mesocosms developed a population of Potamogeton pectinatus during 1996. In Fig. 11, the open 

water mesocosm with lower dissolved 0, values was an algal-dominated mesocosm. 

Patterns in vegetation and aquatic metabolism—^The diurnal oxygen curve analyses indicated that the 

emergent zone had no measurable water column GPP and had very low rates of CR For a period in August 

1995 (Fig. 12). In contrast, the highest photosynthetic rates were in the open water zone. The transitional 

zone had intermediate photosynthetic rates, but the highest mean respiration rates during the time periods 

available for data analyses. Methane fluxes among zones were not significantly different as summarized in 

Table I. Though caution was taken, distiu-bing the sediments while sampling from the canoe may cause 

release of gas bubbles or wind may play a role in releasing bubbles from the sediment. 
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Mesocosm plant litter manipulation experiments indicated that all treatments had effects on methane 

levels and the sediment-only (open water) treatment had significantly higher dissolved Oj (Table 2). The plant 

litter densities were 2.2 ± 1.2 kg m'^ (mean ± S.D.). Diffusive methane fluxes from the normal and half-litter 

treatments were generally higher than the other treatments. The litter-only and sediment-only treatments had 

flux rates about 40-60% of the normal litter rate. 

Discussion 

Many factors are responsible for the different carbon flow pathways in the water column of different 

zones in this wetland, including the physical effects of plant structure. The combination of litter, emergent 

plants, and lemnids lead to shading of the water column and reduce wind effects on the air-water interface 

(resulting in thicker SBLs). Each of those physical processes also affects dissolved O, and temperature, as 

demonstrated by the transect data (Figs. 3-8). Anaerobic conditions exist throughout the water column in the 

emergent zone. Most of the water column in the open water zone is aerobic during the day while near-

sediment water is anaerobic (Figs. 9 and 10). As a result, in the open water and transitional zones, both 

aerobic respiration and methanogenesis are important metabolic pathways. In contrast, methanogenesis is the 

dominant carbon flow pathway in the emergent zone. The transitional zone's carbon pathways are similar to 

the open water zone during the time analyzed. However, at other times, the dissolved O, and temperature 

patterns found in transitional zone has shown greater resemblance to the patterns in the emergent zone (Rose 

and Crumpton 1996 and unpublished data). This is likely due to the spatial (Figs. 3-8) and temporal variability 

of plant cover during the growing season (Rose and Crumpton 1996) and the subsequent effect on physical 

processes in the transitional zone. 

Mesocosm studies confirm the role of emergent plants in regulating the temperature and dissolved O, 

of the water column. Creating open water mesocosms resulted in diurnal changes in dissolved O, and 

temperature similar to those found in the open water zone while the vegetated mesocosms had diurnal changes 

similar to the emergent zone of Goose Lake Marsh (Figs. 9-11). The litter and sediment manipulations also 

produced methane concentrations and diffusive methane flux similar to the patterns found in different zones of 

Goose Lake Marsh. Those results also indicate that methanogenesis can take place in an anaerobic water 

column as well as the sediment. Altogether, the mesocosm results support the idea that as emergent vegetation 

communities develop and plant litter accumulates, this biological community alters the physical environment 

and as a result affects microbial processes. 

There were consistently great differences in dissolved CH4 concentrations along the transects (Figs. 3-

8). These differences were due to the balance among methanogenesis, methane oxidation, and the methane 

flux to the atmosphere. The elevated methane concentrations in the emergent zone are higher than those 

reported by many researchers, but are comparable to those previously reported for shallow, Typha sp.-
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dominated wetlands in agricultural areas (Schipper and Reddy 1994). Other anaerobic pathways (such as 

denitrification) are likely to be limited by availability of terminal electron acceptors (in the absence of external 

inputs). Nitrate was not measurable in water column of any of the wetland zone during the 1994 growing 

season (Rose and Crumpton 1996). Despite CH4 concentration differences along the transects (Figs. 3-8) the 

diffusive CH4 flux rates were not different (Table I) due to the thicker SBL and cover by litter and lemnids in 

the emergent zone. Other researchers have generally found higher methane flux rates in vegetated areas of 

wetlands than in open water areas (Delaune et al. 1983; Bartlett et al. 1988; Wilson et al. 1989). Methane flux 

through plants (which we did not measure in this study) would be responsible for some of differences among 

different wetland areas. Bartlett et al. (1988) found no significant differences for air/water diffusive flux 

among vegetated and open water habitats. Some studies have found greater ebullation in open water areas 

(Chanton et al. 1989; Chanton and Dacey 1991), other studies have found greater ebullation in macrophyte 

covered areas (Bartlett et al. 1988; Devol et al. 1988). The net CH4 flux rates measured in Goose Lake Marsh 

probably represent the seasonal peak rates. Other researchers have found that methane flux peaks in the 

middle of the growing season in wetlands (Schutz et al. 1991). There could be diurnal methane flux patterns 

in this system especially in the open water zone where diurnal temperature and dissolved Oj changes are most 

dramatic (Figs. 9-10). Diurnal measurements were not made. However, Fig. 10 shows that near the sediment 

(where much of the methanogenesis would take place) had very small diurnal temperature changes and no 

dissolved O, changes, so diurnal CH4 flux rates may not vary dramatically. 

In some aquatic systems, much of the methane generated is consumed by methane oxidation at the 

aerobic/anaerobic interface at the surface of the sediment (Rudd and Taylor 1980) or in the rhizosphere of 

emergent macrophytes (Gerard and Chanton 1993). In Goose Lake Marsh, the sediment and part or all of the 

water column is anaerobic (Fig. 10). Other researchers have noted that oxygen-depleted water restricts 

methane oxidation (Lidstrom and Somers 1984; Yavitt et al. 1992). Methane oxidation of gas dissolved in 

bubbles is unlikely in this shallow system since it has been shown that bubbles lost < 10% of their methane 

while transversing a 10m water column (Hesslein 1976; Robertson 1979). In addition to diffusion and 

ebullation, another important CH4 flux pathway is through emergent aquatic plants. In many systems, it is the 

dominant CH4 flux pathway (Cicerone and Oremland 1988; Chanton and Dacey 1991; Schutz et al. 1991; 

Schipper and Reddy 1994). But, during this study in this system, there was a predominance of dead stalks 

(Figs. I and 3-8), most of which were flooded (personal observation) probably due to high water in the spring 

and during previous years. The flooded stalks would not be gas conduits for methane out of the sediment nor 

oxygen into the rhizosphere. As a result, both plant-mediated methane flux and methane oxidation would have 

been minor contributors to the methane budget in Goose Lake Marsh during this study and therefore the 

measured methane fluxes should be a reasonable estimate of methanogenesis. 
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Combining analyses of GPP, aerobic respiration, and methanogenesis reveals intriguing patterns in 

the relative importance of different metabolic pathways (Table 3). Microbial photosynthesis and respiration 

were much more important pathways in the transitional and open water zone than in the emergent zone. The 

GPP rates for the open water and transitional zones are within the expected range for eutrophic aquatic systems 

(Wetzel 1983). If just aerobic respiration rates were considered, the transitional and open water zones would 

be considered autotrophic, but were clearly heterotrophic when methanogenesis was also considered. A 

complete carbon budget must obviously include production from fi'ee-floating plants (which may shift position 

among zones due to wind) and emergent plants (both above and below ground production). Prairie pothole 

wetlands undergo dramatic, often cyclic vegetation changes, with the period of the cycle typically ranging 

from 5-20 years in response to water-level fluctuations and other environmental factors (Weller and Spatcher 

1965; van der Valk and Davis 1978). During this cycle, total annual shoot production may change 18-fold; net 

average above ground primary production of emergent vegetation may be as high as 23 g dry mass m'" d"' (van 

der Valk and Davis 1978). Assuming dry biomass values were roughly 45% carbon (Westlake 1965) this 

represents over 10 g C m'^ d"'. The productivity of emergent vegetation and their physical effects on the water 

column likely result in the the emergent zone being a net producer and storer of carbon. While the emergent 

zone's productivity was relatively low during this study period due to low densities of living plants, it had a 

large reserve of organic material in the form of litter (due to past production) relative to the other zones (Figs. 

I and 3-8). Once those areas become open water, the greater potential aerobic respiration rates and continued 

decomposition due to methanogenesis in the sediment combine to allow the open water zones to be net carbon 

consumers. Aerial photographs show that the much of the area that was the open water zone in 1995 was 

covered with emergent vegetation fi-om 1985-1992. The relative importance of the metabolic processes 

associated with the rhizosphere would also vary during the cycle and likely be most important when emergent 

vegetation productivity is high and least important in the open water zone. This cycle has been well 

documented in Goose Lake Marsh (Weller and Spatcher 1965; Roosa 1981). 

As emergent plant stands develop, alterations in the physical and chemical environment of the bulk 

water phase take place. For example, in 1990 when the wetland mesocosms were newly established, diurnal 

dissolved O2 and temperature patterns were similar to those found in the open water zone of Goose Lake 

Marsh. Over the years, Typha x glauca shoot densities have increased and litter has accumulated. During 

1991, the diurnal dissolved 0, and temperature patterns were similar to the patterns found in the transitional 

zone. During 1993, the dissolved O2 and temperature were similar to the emergent zone of Goose Lake Marsh 

(Crumpton et al., in prep.). It may be assumed that an accumulation of several growing seasons of plant litter 

may be necessary to create anaerobic conditions in wetlands. This could be an important pattern in restored 

and created wetlands. 
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This study deals with a small part of the carbon cycle. Yet, the results suggest that food webs, 

bioenergetics, and biogeochemicai cycles should vary spatially and temporally within wetlands. Anaerobic 

metabolic pathways are less efficient than aerobic respiration, resulting in lower bacterial growth yield and 

generally lower ratios of nutrient assimilation relative to mineralization. As a result, assimilation is a less 

effective nutrient sink under anaerobic conditions and nutrients (such as NH4') tend to accumulate (Gale and 

Gilmour 1988). Anaerobic conditions can also affect other nutrient sinks including chemical complexation of 

P04"^ and "coupled" reactions such as nitrification-denitrification. To better understand the long-term 

dynamics of aerobic and anaerobic metabolism in prairie pothole wetlands, studies over additional systems and 

additional stages will be needed. Experiments using mesocosms may allow scientists to better study the 

dominant microbial processes at different stages of the prairie pothole cycle. Either directly or indirectly, 

vegetation dynamics are likely to control many of the complex biogeochemicai transformations in wetlands. 
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Table 1. Comparison of methane flux (mg CH4 m'" h"') in different wetland zones. Data are means from all 
days available during July and August 1995. Different superscripted letters indicate significant differences 
among zones at p < 0.05 after accounting for date effects. Date effects were significant on several dates for 
diffusion, but not for bubbles. 

Zone 
Emergent Transitional Open Water MSE 

Diffusion 25 34 37 385 

Bubbles 124 98 72 3238 
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Table 2. Mean values for various parameters in wetland mesocosms. Different superscripted letters indicate 
differences among treatments at p < 0.05 after accounting for mesocosm effects. 

Treatments 
Normal litter Half litter Litter Sediment only 

Parameter and sediment and sediment only (open water) MSE 

Temperature ("C) 5.8* 12^ 6.0* 72* 0.6 

Dissolved OiCmgL"') 0.4* 0.6* 0.3* 1.2'' 0.04 

24 October 

Methane (mg L"') 2.6* 2.3* 1.3'' 0.3"= 0.4 

Estimated Dissolved 6.5* 5.8*^ 3.9"*" 3.2' 2.5 
Methane Flux (mg m"' h"') 

26 October 

Methane (mg L"') 3.5* 2.1'" 1.3' 0.4'^ 0.3 

Estimated Dissolved 8.6* 5.5 3.3' 4.5 1.7 
Methane Flux (mg m"* h"') 
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Table 3. Summary of water column metabolism (g C m'" d"') in different wetland zones. Data are means from 
ail days available during July and August, 1995. 

Zone 
Emergent Transitional Open Water 

Gross Primary Productivity 0.0 3.5 3.9 

Aerobic Respiration 0.15 2.4 2.3 

Methanogenesis 5.4 4.8 3.9 
(CH4 + CO2) 

Dates Analyzed July 1-Aug. 31 Aug. I9-Aug. 31 July I-Aug. 10 
Aug. 17-Aug. 31 



www.manaraa.com

36 

Goose Lake Marsh 
July, 1995 

Dssolved Oxygen (mg/L) 

(^DO 200(m) 

Fig. 1. Vegetation patterns in Goose Lake Marsh recorded during July 1995. Vertical hatches indicate live 
emergent plants (predominantiy Typha spp.), dark grey areas represent dead, emergent macrophytes, and the 
light grey areas indicate open water areas. Locations of sampling transect are marked by (Tl, T2 etc.), and 
the locations continuous dissolved oxygen and temperature are marked by numbers (1, 2, 3). 
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Vial 

Foil Bubble Shield Funnel 

Fig. 2. Methane sampling apparatus. GC vial with funnel capflired gas flux due to both bubbles and diffusion 

while the shield on the left prevented bubbles from entering the second vial. 
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Fig. 3. Physical and chemical parameters along transect I (July 27, 1995). Error bars represent the least 

significant differences. Black areas on upper isopleth graphs represent sediment. 
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Fig. 4. Physical and chemical parameters along transect 2 (August 1, 1995). Error bars represent the least 

significant differences. Black areas on upper isopleth graphs represent sediment. 
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Fig. 5. Physical and chemical parameters along transect 3 (August 8, 1995). Error bars represent the least 

significant differences. Black areas on upper isopleth graphs represent sediment. 



www.manaraa.com

41 

% Ught 

Tenrperature ( C) 

2 0 1 2 3  

Dissolved Oxygen (mg L ) 

Dissolved Methane (mg L ) 

Typha sp. Stalks 

'-jvs 

Dead 

Lemnid density 

CN 
E 400 
3 

0 
4.0 

-EH3-
i 

CN 
E 2.0 

0.0 

Litter density 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
•stance (m) 

Fig. 6. Physical and chemical parameters along transect 4 (August 15, 1995). Error bars represent the least 

significant differences. Black areas on upper isopleth graphs represent sediment. 
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Fig. 7. Physical and chemical parameters along transect 5 (August 18, 1995). Error bars represent the least 

significant differences. Black areas on upper isopleth graphs represent sediment. 
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Fig. 8. Physical and chemical parameters along transect 6 (August 26, 1995). Error bars represent the least 

significant differences. Black areas on upper isopleth graphs represent sediment. 
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Goose Lake Marsh 
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Fig. 9. Temperature and dissolved O, changes through time at open water), transitional, and emergent 
vegetation sites. 
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Fig. 10. Temperature and dissolved O, changes through time at the top and bottom of open water and 
emergent vegetation sites. 
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Fig. 11. Temperature and dissolved O2 changes through time for three open water mesocosms and three 
normal (emergent vegetation) mesocosms. 
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Fig. 12. Aerobic respiration parameters (derived from diurnal oxygen curve analyses) through time at sites 1 

open water, 2 transitional, and 3 emergent vegetation sites. 
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CHAPTER 4. GENERAL SUMMARY 

Wetland areas with varying amounts of emergent and free-floating vegetation potentially have very 

different pathways of carbon and energy flow. In Goose Lake Marsh, a natural prairie pothole wetland, synoptic 

surveys, continuous monitoring, and transect measurements were used to examine patterns light availability, 

temperature, dissolved O2 concentrations, dissolved CH4 concentrations, plant densities, litter detisities, and 

CH4 flux (due to diffusion and ebuliatfon) within and outside emergent vegetation zones were used to determine 

differences in wetland microbial processes. Three habitat zones were identified based on the distribution of 

vegetation and dissolved oxygen: (1) a zone of dense emergent macrophytes providing significant submerged 

structure but with nearly or completely anoxic water, (2) a transition zone of sparse emergent macrophytes 

providing less structure but with more aerobic water, and (3) an open water zone with consistently aerobic 

water but with little submerged structure. Water colimm light availability was as low as 2% of ambient light in 

emergent vegetated due to canopy cover, small floating plants (lemnids), and plant litter. Water temperatures 

and dissolved oxygen concentrations were significantly lower and varied less diumally in vegetated areas. 

Photosynthesis and aerobic respiration rates in the water column were much greater in open water than 

emergent vegetation zones. Methane concentrations in the water column were lower in open water than in 

emergent vegetation zones. The difference in dissolved O,, temperature, and methane concentration patterns 

between the vegetated and open water zones can be attributed to the physical effects of vegetation on Ot 

supply. Despite differences in dissolved CH4 concentrations, CH4 fluxes generally did not differ significantly 

among zones due to increased plant cover and thicker stagnant boundary layers in the emergent zones which 

slow gas diffusion and possibly due to the quality of organic substrate. The results from the mesocosm 

experiments are in agreement with the patterns of dissolved O2, temperature, and diffusive CH4 flux found in 

Goose Lake Marsh. 

The papers presented here concern only small parts of the carbon cycle; however, large differences 

among carbon metabolic pathways were found in the wedand zones. It is reasonable to assiune that processes 

linked to carbon cycling would also differ among zones. Some of the effects of the emergent vegetation/low 

dissolved O2 relationship may have management implications at the watershed/landscape scale. Created and 

restored wetiands have been suggested as a method of reducing the nitrate concentration in waters that are used as 

sources for drinking water as well as nitrogen-limited coastal waters (Jansson et al. 1994). Wetlands are sinks for 

water-borne nitrate due to their potentially high rates of denitrification. The results presented here suggest diat as 

plant conmiunities develop in newly created or restored wetlands, the additional plant cover and litter results in the 

water column becoming increasingly anaerobic. One consequence can be increased nitrate removal rates (Stefan et 

al. 1994, Crumpton, et al. in prep). Other water quality parameters may also be effected, so there is a need for 

further research into these areas. 
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Through direct and indirect processes, the relationship between plant structure and Ot distribution may 

influence many wedand flmctions including food web structure and bioenergedcs, aerobic and anaerobic 

metabolism, nutrient cycling, and the fate and effects of chemical contaminants. Because of their annual and 

interannual changes in water levels and aquatic vegetation, prairie pothole wetlands may be very interesting 

systems in which to carry out further studies of these processes. If we are to understand fiincdonal processes of 

wetlands, we must recognize that they are complex spatial and temporal mosaics of habitats with distinctive 

structural and fimctional characteristics. 
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